Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tuning Contact Recombination and Open-Circuit Voltage in Polymer Solar Cells via Self-Assembled Monolayer Adsorption at the Organic-Metal Oxide Interface

Identifieur interne : 000281 ( Main/Repository ); précédent : 000280; suivant : 000282

Tuning Contact Recombination and Open-Circuit Voltage in Polymer Solar Cells via Self-Assembled Monolayer Adsorption at the Organic-Metal Oxide Interface

Auteurs : RBID : Pascal:13-0362353

Descripteurs français

English descriptors

Abstract

We adsorbed fluorinated-alkyl and hydrogenated-alkyl phosphonic acid derivatives onto indium tin oxide (ITO) to form self-assembled monolayers (SAMs). Polymer solar cells having these treated ITOs as anodes display open-circuit voltages (Vocs) that are higher than those with bare ITO as anodes. Although the work function of ITO can be significantly tuned by SAM adsorption, the position of the Fermi level of the anode with respect to the hole transport level in the polymer active layer is essentially the same in all of the devices, suggesting that changes in the work function of the anode are not responsible for the Voc variation. Rather, the barrier for minority carrier transport to ITO is altered through SAM adsorption. The adsorption of fluorinated-alkyl phosphonic acid on ITO, in particular, induces a barrier of 2.4 eV for minority carrier transport, which effectively increases carrier selectivity at the anode and increases the Voc in polymer solar cells comprising such treated ITO as anodes compared to those with untreated anodes.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0362353

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Tuning Contact Recombination and Open-Circuit Voltage in Polymer Solar Cells via Self-Assembled Monolayer Adsorption at the Organic-Metal Oxide Interface</title>
<author>
<name>HE WANG</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical and Biological Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gomez, Enrique D" uniqKey="Gomez E">Enrique D. Gomez</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical and Biological Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name>ZELEI GUAN</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jaye, Cherno" uniqKey="Jaye C">Cherno Jaye</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Materials Science and Engineering Laboratory, National Institute of Standards and Technology</s1>
<s2>Gaithersburg, Maryland 20899</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Gaithersburg, Maryland 20899</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Toney, Michael F" uniqKey="Toney M">Michael F. Toney</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Stanford Synchrotron Radiation Lightsource</s1>
<s2>Menlo Park, California 94025</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Stanford Synchrotron Radiation Lightsource</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fischer, Daniel A" uniqKey="Fischer D">Daniel A. Fischer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Materials Science and Engineering Laboratory, National Institute of Standards and Technology</s1>
<s2>Gaithersburg, Maryland 20899</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Gaithersburg, Maryland 20899</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kahn, Antoine" uniqKey="Kahn A">Antoine Kahn</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Loo, Yueh Lin" uniqKey="Loo Y">Yueh-Lin Loo</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical and Biological Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0362353</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0362353 INIST</idno>
<idno type="RBID">Pascal:13-0362353</idno>
<idno type="wicri:Area/Main/Corpus">000450</idno>
<idno type="wicri:Area/Main/Repository">000281</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AND circuit</term>
<term>Active layer</term>
<term>Adsorption</term>
<term>Alkyl</term>
<term>Anode</term>
<term>Charge carrier mobility</term>
<term>Electronic structure</term>
<term>Fermi level</term>
<term>Hole mobility</term>
<term>Indium oxide</term>
<term>Interface</term>
<term>Minority carrier</term>
<term>Organometallic compound</term>
<term>Polymer</term>
<term>Selectivity</term>
<term>Self-assembled layer</term>
<term>Solar cell</term>
<term>Tin oxide</term>
<term>Volatile organic compound</term>
<term>Work function</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Circuit ET</term>
<term>Polymère</term>
<term>Cellule solaire</term>
<term>Couche autoassemblée</term>
<term>Adsorption</term>
<term>Composé organométallique</term>
<term>Interface</term>
<term>Alkyle</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Travail sortie</term>
<term>Niveau Fermi</term>
<term>Structure électronique</term>
<term>Mobilité trou</term>
<term>Anode</term>
<term>Composé organique volatil</term>
<term>Couche active</term>
<term>Porteur minoritaire</term>
<term>Mobilité porteur charge</term>
<term>Sélectivité</term>
<term>Substrat oxyde d'indium et de zinc</term>
<term>Substrat InSnO</term>
<term>8460J</term>
<term>6843</term>
<term>8105L</term>
<term>7118</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We adsorbed fluorinated-alkyl and hydrogenated-alkyl phosphonic acid derivatives onto indium tin oxide (ITO) to form self-assembled monolayers (SAMs). Polymer solar cells having these treated ITOs as anodes display open-circuit voltages (V
<sub>oc</sub>
s) that are higher than those with bare ITO as anodes. Although the work function of ITO can be significantly tuned by SAM adsorption, the position of the Fermi level of the anode with respect to the hole transport level in the polymer active layer is essentially the same in all of the devices, suggesting that changes in the work function of the anode are not responsible for the V
<sub>oc</sub>
variation. Rather, the barrier for minority carrier transport to ITO is altered through SAM adsorption. The adsorption of fluorinated-alkyl phosphonic acid on ITO, in particular, induces a barrier of 2.4 eV for minority carrier transport, which effectively increases carrier selectivity at the anode and increases the V
<sub>oc</sub>
in polymer solar cells comprising such treated ITO as anodes compared to those with untreated anodes.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>40</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Tuning Contact Recombination and Open-Circuit Voltage in Polymer Solar Cells via Self-Assembled Monolayer Adsorption at the Organic-Metal Oxide Interface</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HE WANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GOMEZ (Enrique D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZELEI GUAN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JAYE (Cherno)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TONEY (Michael F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FISCHER (Daniel A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KAHN (Antoine)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LOO (Yueh-Lin)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemical and Biological Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering, Princeton University</s1>
<s2>Princeton, New Jersey 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Materials Science and Engineering Laboratory, National Institute of Standards and Technology</s1>
<s2>Gaithersburg, Maryland 20899</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Stanford Synchrotron Radiation Lightsource</s1>
<s2>Menlo Park, California 94025</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>20474-20484</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000504228730120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>72 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0362353</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We adsorbed fluorinated-alkyl and hydrogenated-alkyl phosphonic acid derivatives onto indium tin oxide (ITO) to form self-assembled monolayers (SAMs). Polymer solar cells having these treated ITOs as anodes display open-circuit voltages (V
<sub>oc</sub>
s) that are higher than those with bare ITO as anodes. Although the work function of ITO can be significantly tuned by SAM adsorption, the position of the Fermi level of the anode with respect to the hole transport level in the polymer active layer is essentially the same in all of the devices, suggesting that changes in the work function of the anode are not responsible for the V
<sub>oc</sub>
variation. Rather, the barrier for minority carrier transport to ITO is altered through SAM adsorption. The adsorption of fluorinated-alkyl phosphonic acid on ITO, in particular, induces a barrier of 2.4 eV for minority carrier transport, which effectively increases carrier selectivity at the anode and increases the V
<sub>oc</sub>
in polymer solar cells comprising such treated ITO as anodes compared to those with untreated anodes.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H35</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A05Z</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A18</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Circuit ET</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>AND circuit</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Circuito Y</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Self-assembled layer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Capa autoensamblada</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Adsorption</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Adsorption</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Adsorción</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé organométallique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Organometallic compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto organometálico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Interface</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Interface</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Interfase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Alkyle</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Alkyl</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Alquilo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Travail sortie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Work function</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Función de trabajo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Niveau Fermi</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Fermi level</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Nivel Fermi</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Structure électronique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Electronic structure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estructura electrónica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Mobilité trou</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Hole mobility</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Movilidad agujero</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Anode</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Anode</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composé organique volatil</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Volatile organic compound</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Compuesto orgánico volátil</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Porteur minoritaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Minority carrier</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Portador minoritario</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Charge carrier mobility</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Movilidad portador carga</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Sélectivité</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Selectivity</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Selectividad</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Substrat oxyde d'indium et de zinc</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Substrat InSnO</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>6843</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>8105L</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>7118</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>343</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000281 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000281 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0362353
   |texte=   Tuning Contact Recombination and Open-Circuit Voltage in Polymer Solar Cells via Self-Assembled Monolayer Adsorption at the Organic-Metal Oxide Interface
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024